Founding Partners Supported by

Real-Time Traffic Event Detection From Social Media

1st of June, 2017


Abstract

Smart communities are composed of groups, organizations, and individuals who share information and make use of that shared information for better decision making. Shared information can come from many sources, particularly, but not exclusively, from sensors and social media. Social media has become an important source of near-instantaneous user-generated information that can be shared and analyzed to support better decision making. One domain where social media data can add value is transportation and traffic management. This article looks at the exploitation of Twitter data in the traffic reporting domain. A key challenge is how to identify relevant information from a huge amount of user-generated data and then analyze the relevant data for automatic geocoded incident detection. The article proposes an instant traffic alert and warning system based on a novel latent Dirichlet allocation (LDA) approach (“tweet-LDA”). The system is evaluated and shown to perform better than related approaches.

 

Full paper is available to download here

Back